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MAO activation of group 4 TiMClz complexes that contain ~ Scheme 1. Anion = B(CsFs)s~
sterically bulky tris(pyrazolyl)borate ligands (Tenerates highly Zr(CHoPh), + K[TpY] ————— Tp'Zr(CHyPh)s
active ethylene polymerization catalysts with interesting properties, CHCl 1
including the production of ultrahigh molecular weight polyethylene +| CHyCl
(PE) and high 1-hexene incorporation in ethylene/hexene copo- PhsC l 60 °C
lymerization! These systems differ from metallocene catalysts in
several ways. First, TM complexes can undergo a variety of Q \@/
rearrangements, suggesting that Tigands may not be innocent Q\\(ﬂ/ / / \ CH,Ph
in olefin polymerization2¢23 In contrast, the CM units in B/H-f'i’:uz‘r ---- '\IIO - IPN
metallocene catalysts are very robust. SecondVRg" cations, N /ON 0°C \ / @ CH,Ph
which are potential active species in 'MCIs/MAO catalysts, /@)\
contain two alkyl groups capable of undergoing olefin insertion, 3 _ _ 2
whereas monoalkyl GMR™ species are active in metallocene _60\ linear ,/_6
catalysts. However, the active species inM@Is/MAO catalysts R PE 2 —
are unknown, and the chemistry of MR; and TpMR," com- 23°C l l
plexes is unexplored. Group 4 T alkyl complexes are limited Ph

to Tp*ZrR,(O'Bu) (Tp* = HB(3,5-Mepz); R = Me, CH:Ph; pz Q \6/
-N
B/H R4t

= pyrazolyl) and Tp*TiMeOR (R' = Me, iPr, 'Bu).* Here, we _ Ph
describe the synthesis of Tp*Zr(GPh) (1) and the generation ~ \_ N"Nw. 1l N2 prloN= }‘er@ —
and unusual reactivity of the cationic complex [Tp*Zr(&Hh)]- \Q
[B(CeFs)4] (2). C_)
The reaction of Zr(CkPh), with K[Tp*] in CH ,Cl, affords1in
68% isolated yield, as shown in Scheme 1. This unusual reaction
is based on Parkin's syntheses ef-Tp*)AIMe, and {«?-HB(3- —_—
‘Bupz)} AlMe; by reaction of AIMg with K[Tp*] or TI{HB(3-
‘Bupz)}.> NMR data show thafl hasCs, symmetry in CRCl,.
ThelJcy value for the ZEH,Ph unit (113 Hz) shows that the benzyl
ligands aren-coordinated. The structure dfwas confirmed by /H
X-ray crystallography (Figure 1). B
Cationic complexX was generated quantitatively by the reaction
of 1 with [PhsC][B(C6Fs)4] in CD,Cl, at —60 °C. The!H and3C /KQ\
NMR spectra oR each contain a single set of pyrazolyl resonances 6 7
and a single set of benzyl resonances. Tag value for the Z€H,-
Ph groups (127 Hz) is intermediate between the values expectediH resonance at 2.95. These resonances are assigned to tB&iB-
for #* (ca. 115 Hz) andy? (ca. 145 Hz) coordinatiof,which Ph unit, consistent with data for BHl,(CFs),B-NMejs (6 13C 23.9)?
suggests thaP contains onenl-benzyl and oney?-benzyl that The identity of3 was confirmed by conversion to the PMm@mplex
exchange rapidly in solutioh!H NMR spectra do not show splitting  3-PMe; (Figure 1). Takats reported a similar rearrangement of-Tp*
or broadening of the benzyl resonances dowr &% °C, implying Sm(G=CPh) to (Tp*{ H(PhG=C)B(u-Mezpz)} Sm(y>-Me;pz) by
that the barrier for this process is low. exchange of SmC=CPh and B-pz ligands® 3 exhibits Cs
2 cleanly rearranges td (PhCH)(H)B(u-Mezpz)s} Zr(n2-Me;- symmetry by'H and 3C NMR above—40 °C, indicative of a
pz)(CHPh)][B(CsFs)4] (3) by net exchange of ZCH,Ph and dynamic structure under these conditions. However lth&IMR
B—pz ligands within 10 min at 0C in CD,Cl,. X-ray analysis spectrum exhibits selective broadening of the bis(pyrazolyl)borate
shows that3 contains any?-Mezpz ligand and a bis(pyrazolyl)-  3-Me resonance and the Zbenzyl resonances at60 °C.2° The
borate ligand that is coordinated through two nitrogens and by a 3-Me-pz ando-Ph resonances each split into two resonances, and
B—H—2Zr agostic interaction (ZrB 2.870 A, Z—H ca. 2.03 A; the other benzyl resonances broaden more- @4 °C, while the
Figure 1). Reger reported a similar but apparently weaker interaction remaining resonances 8femain sharp. These results are consistent
in [H(u-H)B(pz),]CpZrCl, (Zr—B 2.957 A, Zr-H ca. 2.27 A), a with net rotation around the ZCH,Ph bond, by either simple

neutral, less coordinatively unsaturated analogu8.ofrhe Zr— rotation or slippage tg*-coordinatiorf
benzyl ligand of3 is n2-coordinated in CBCl, solution &Jcy = Both 2 and 3 react with ethylene at-60 °C to produce linear
144 Hz) and in the solid state (ZCipso 2.542 A; Zr—-C—Cipso = PE, which demonstrates that both are, or are precursors to, active

84.C%). An HMQC NMR spectrum of3 (=20 °C) shows that an ethylene polymerization catalysts under very mild conditions.
extremely broad3C resonance ab 24.6 correlates with a broad  Detailed studies of these polymerizations to probe the possible role
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Figure 1. ORTEP views ofl, the cations 08 and3-PMe;, and7. Hydrogen
atoms are omitted, except for the-Bi—Zr hydrogens.

of Tp'ZrR;* and{ RHB(u-pz),} ZrXR* species in TZrCl/MAO
systems are in progress.

The reactions o and3 with 2-butyne were explored to compare
the insertion reactivity of these speci@sreacts with 2 equiv of
2-butyne within minutes at 60 °C in CD,Cl, to form [Tp*Zr(CH,-
Ph)(CMe=CMeCMe=CMeCH,Ph)][B(CsFs)4] (4) quantitatively by
double insertion into a ZrCH,Ph bond‘! Hydrolysis of4 gives
toluene and Z,E)-2,3,4-trimethyl-1-phenyl-2,4-hexadiene, while
deuteriolysis gives 4,E)-5-deutero-2,3,4-trimethyl-1-phenyl-2,4-
hexadiene, confirming the double insertion. No further reaction of
4 with 2-butyne is observed at60 °C. NMR studies at-60 °C
show that4 hasC; symmetry, and that theeCMe=CMeCH,Ph

Scheme 2. L = (PhCH)(H)B(Mezpz),, L' = n?-Mezpz

3 6 + =
T Ph
® ®
LL'Zr | LLZr
Ph PH
8

walking of 8 (i.e., 5-H elimination, olefin rotation, and reinsertion)
followed by 3-Cp* elimination produces. Related alkyne insertion/
cyclization sequences to form cyclopentadierglkyl ligands have
been observed in Hf carborane and Pd syst€riihe viability of
B-Cp* elimination was established by the reaction ®fwith
allylpentamethylcyclopentadiene, which produésd 25% NMR
yield. g-Alkyl and g-allyl eliminations are known3

These studies show that Tp*Zr(GPh)* (2) can be generated
at low temperature and rearranges rapidly at@to the bis-
(pyrazolyl)borate comple®. Both 2 and3 are highly reactive for
ethylene and alkyne insertions. Similar rearrangements can be
anticipated for other group 4 TR, species, and both TArR,*
and{RHB(u-pz)} ZrXR* species may be important in TCly/
MAO catalysts. The unexpected formation®by the reaction of
3 with 2-butyne suggests that other interesting insertion/cyclization
chemistry may be possible with this system.
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hydrogens are diastereotopic. These results suggest that the terminal

double bond or phenyl group of theCMe=CMeCH,Ph unit
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alkenyl bond is faster than insertion into the-&renzyl bond of
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pentamethylcyclopentadiene. The reaction3ofvith 3 equiv of
2-butyne also give$ andcis-3-methylstyrene. The structure 6f
was confirmed by derivatization fPhCH)(H)B(u-Mexpz),} Zr-
(Cp*)(n*-Meypz)CI (7, Figure 1) by reaction with"Buz(PhCH,)N]-
Cl.

A plausible mechanism for the conversion3ofo 6 is shown in
Scheme 2. Three successive 2-butyne insertions followed by
intramolecular insertion/cyclization yields intermedi&eChain
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